Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Data ; 9(1): 336, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1890208

ABSTRACT

Bats are considered reservoirs of many lethal zoonotic viruses and have been implicated in several outbreaks of emerging infectious diseases, such as SARS-CoV, MERS-CoV, and SARS-CoV-2. It is necessary to systematically derive the expression patterns of bat virus receptors and their regulatory features for future research into bat-borne viruses and the prediction and prevention of pandemics. Here, we performed single-nucleus RNA sequencing (snRNA-seq) and single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) of major organ samples collected from Chinese horseshoe bats (Rhinolophus affinis) and systematically checked the expression pattern of bat-related virus receptors and chromatin accessibility across organs and cell types, providing a valuable dataset for studying the nature of infection among bat-borne viruses.


Subject(s)
COVID-19 , Chiroptera , Receptors, Virus , SARS-CoV-2 , Animals , Genome, Viral , Humans , Phylogeny , Single-Cell Analysis
2.
Zool Res ; 43(4): 514-522, 2022 Jul 18.
Article in English | MEDLINE | ID: covidwho-1856595

ABSTRACT

Bats are reservoirs of various viruses. The widely distributed cave nectar bat ( Eonycteris spelaea) is known to carry both filoviruses and coronaviruses. However, the potential transmission of theses bat viruses to humans is not fully understood. In this study, we tracked 16 E. spelaea bats in Mengla County, Yunnan Province, China, using miniaturized GPS devices to investigate their movements and potential contact with humans. Furthermore, to determine the prevalence of coronavirus and filovirus infections, we screened for the nucleic acids of the Menglà virus (MLAV) and two coronaviruses (GCCDC1-CoV and HKU9-CoV) in anal swab samples taken from bats and for antibodies against these viruses in human serum samples. None of the serum samples were found to contain antibodies against the bat viruses. The GPS tracking results showed that the bats did not fly during the daytime and rarely flew to residential areas. The foraging range of individual bats also varied, with a mean cumulative nightly flight distance of 25.50 km and flight speed of up to 57.4 km/h. Taken together, these results suggest that the risk of direct transmission of GCCDC1-CoV, HKU9-CoV, and MLAV from E. spelaea bats to humans is very low under natural conditions.


Subject(s)
Chiroptera , Coronavirus Infections , Viruses , Animals , China/epidemiology , Coronavirus Infections/veterinary , Humans , Phylogeny , Plant Nectar
3.
mBio ; 13(3): e0046322, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1807326

ABSTRACT

Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and SARS-CoV-2, the causative agents of SARS, which broke out in 2003, and coronavirus disease 2019 (COVID-2019), which broke out in 2019, probably originated in Rhinolophus sinicus and R. affinis, respectively. Rhinolophus bats are important hosts for coronaviruses. Many SARS-related coronaviruses (SARSr-CoVs) have been detected in bats from different areas of China; however, the diversity of bat SARSr-CoVs is increasing, and their transmission mechanisms have attracted much attention. Here, we report the findings of SARSr-CoVs in R. sinicus and R. affinis from South China from 2008 to 2021. The full-length genome sequences of the two novel SARSr-CoVs obtained from Guangdong shared 83 to 88% and 71 to 72% nucleotide identities with human SARS-CoV and SARS-CoV-2, respectively, while sharing high similarity with human SARS-CoV in hypervariable open reading frame 8 (ORF8). Significant recombination occurred between the two novel SARSr-CoVs. Phylogenetic analysis showed that the two novel bat SARSr-CoVs from Guangdong were more distant than the bat SARSr-CoVs from Yunnan to human SARS-CoV. We found that transmission in bats contributes more to virus diversity than time. Although our results of the sequence analysis of the receptor-binding motif (RBM) and the expression pattern of angiotensin-converting enzyme 2 (ACE2) inferred that these viruses could not directly infect humans, risks still exist after some unpredictable mutations. Thus, this study increased our understanding of the genetic diversity and transmission of SARSr-CoVs carried by bats in the field. IMPORTANCE Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 probably originated from the SARS-related coronaviruses (SARSr-CoVs) carried by Rhinolophus bats from Yunnan, China. Systematic investigations of the reservoir hosts carrying SARSr-CoVs in Guangdong and the reservoir distribution and transmission are urgently needed to prevent future outbreaks. Here, we detected SARSr-CoV in Rhinolophus bat samples from Guangdong in 2009 and 2021 and found that the transmission of SARSr-CoV from different host populations contributes more to increased virus diversity than time. Bat SARSr-CoVs in Guangdong had genetic diversity, and Guangdong was also the hot spot for SARSr-CoVs. We once again prove that R. sinicus plays an important role in the maintenance of the SARS-CoVs. Besides, the SARSr-CoVs are mainly transmitted through the intestines in bats, and these SARSr-CoVs found in Guangdong could not use human ACE2 (hACE2), but whether they can pass through intermediate hosts or directly infect humans requires further research. Our findings demonstrate the ability of SARSr-CoVs to spread across species.


Subject(s)
Chiroptera , Coronavirus , Angiotensin-Converting Enzyme 2 , Animals , China/epidemiology , Chiroptera/virology , Coronavirus/classification , Evolution, Molecular , Genome, Viral , Genomics , Humans , Phylogeny , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics
4.
Viruses ; 13(10)2021 09 29.
Article in English | MEDLINE | ID: covidwho-1441884

ABSTRACT

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Subject(s)
Alphacoronavirus/genetics , Chiroptera/virology , Alphacoronavirus/pathogenicity , Animals , Base Sequence/genetics , Biological Evolution , China , Chiroptera/genetics , Coronavirus/genetics , Coronavirus/pathogenicity , Coronavirus Infections/virology , Evolution, Molecular , Genetic Variation/genetics , Genome, Viral/genetics , Genotype , Phylogeny , Sequence Analysis, DNA/methods , Viral Proteins/genetics
5.
Int Health ; 12(2): 77-85, 2020 02 12.
Article in English | MEDLINE | ID: covidwho-1387916

ABSTRACT

BACKGROUND: Strategies are urgently needed to mitigate the risk of zoonotic disease emergence in southern China, where pathogens with zoonotic potential are known to circulate in wild animal populations. However, the risk factors leading to emergence are poorly understood, which presents a challenge in developing appropriate mitigation strategies for local communities. METHODS: Residents in rural communities of Yunnan, Guangxi and Guangdong provinces were recruited and enrolled in this study. Data were collected through ethnographic interviews and field observations, and thematically coded and analysed to identify both risk and protective factors for zoonotic disease emergence at the individual, community and policy levels. RESULTS: Eighty-eight ethnographic interviews and 55 field observations were conducted at nine selected sites. Frequent human-animal interactions and low levels of environmental biosecurity in local communities were identified as risks for zoonotic disease emergence. Policies and programmes existing in the communities provide opportunities for zoonotic risk mitigation. CONCLUSIONS: This study explored the relationship among zoonotic risk and human behaviour, environment and policies in rural communities in southern China. It identifies key behavioural risk factors that can be targeted for development of tailored risk-mitigation strategies to reduce the threat of novel zoonoses.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/transmission , Coronavirus Infections/transmission , Disease Outbreaks/prevention & control , Pneumonia, Viral/transmission , Rural Population , Virus Diseases/transmission , Zoonoses/transmission , Adolescent , Adult , Animals , Betacoronavirus , COVID-19 , China/epidemiology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Health Knowledge, Attitudes, Practice , Humans , Interviews as Topic , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Qualitative Research , Risk Factors , SARS-CoV-2 , Severe Acute Respiratory Syndrome , Virus Diseases/epidemiology , Young Adult , Zoonoses/epidemiology , Zoonoses/virology
6.
J Virol ; 95(22): e0117321, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1371847

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reignited global interest in animal coronaviruses and their potential for human transmission. While bats are thought to be the wildlife reservoir of SARS-CoV and SARS-CoV-2, the widespread human coronavirus OC43 is thought to have originated in rodents. Here, we sampled 297 rodents and shrews, representing eight species, from three municipalities of southern China. We report coronavirus prevalences of 23.3% and 0.7% in Guangzhou and Guilin, respectively, with samples from urban areas having significantly higher coronavirus prevalences than those from rural areas. We obtained three coronavirus genome sequences from Rattus norvegicus, including a Betacoronavirus (rat coronavirus [RCoV] GCCDC3), an Alphacoronavirus (RCoV-GCCDC5), and a novel Betacoronavirus (RCoV-GCCDC4). Recombination analysis suggests that there was a potential recombination event involving RCoV-GCCDC4, murine hepatitis virus (MHV), and Longquan Rl rat coronavirus (LRLV). Furthermore, we uncovered a polybasic cleavage site, RARR, in the spike (S) protein of RCoV-GCCDC4, which is dominant in RCoV. These findings provide further information on the potential for interspecies transmission of coronaviruses and demonstrate the value of a One Health approach to virus discovery. IMPORTANCE Surveillance of viruses among rodents in rural and urban areas of South China identified three rodent coronaviruses, RCoV-GCCDC3, RCoV-GCCDC4, and RCoV-GCCDC5, one of which was identified as a novel potentially recombinant coronavirus with a polybasic cleavage site in the spike (S) protein. Through reverse transcription-PCR (RT-PCR) screening of coronaviruses, we found that coronavirus prevalence in urban areas is much higher than that in rural areas. Subsequently, we obtained three coronavirus genome sequences by deep sequencing. After different method-based analyses, we found that RCoV-GCCDC4 was a novel potentially recombinant coronavirus with a polybasic cleavage site in the S protein, dominant in RCoV. This newly identified coronavirus RCoV-GCCDC4 with its potentially recombinant genome and polybasic cleavage site provides a new insight into the evolution of coronaviruses. Furthermore, our results provide further information on the potential for interspecies transmission of coronaviruses and demonstrate the necessity of a One Health approach for zoonotic disease surveillance.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus/genetics , Recombination, Genetic , Rodentia/virology , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Evolution, Molecular , Genome, Viral/genetics , Humans , Phylogeny , Prevalence , Shrews/virology
7.
BMC Ecol Evol ; 21(1): 148, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1330191

ABSTRACT

BACKGROUND: Bat-borne viruses are relatively host specific. We hypothesize that this host specificity is due to coevolution of the viruses with their hosts. To test this hypothesis, we investigated the coevolution of coronavirus and paramyxovirus with their bat hosts. Published nucleotide sequences of the RNA-dependent RNA polymerase (RdRp) gene of 60 coronavirus strains identified from 37 bat species, the RNA polymerase large (L) gene of 36 paramyxovirus strains from 29 bat species, and the cytochrome B (cytB) gene of 35 bat species were analyzed for coevolution signals. Each coevolution signal detected was tested and verified by global-fit cophylogenic analysis using software ParaFit, PACo, and eMPRess. RESULTS: Significant coevolution signals were detected in coronaviruses and paramyxoviruses and their bat hosts, and closely related bat hosts were found to carry closely related viruses. CONCLUSIONS: Our results suggest that paramyxovirus and coronavirus coevolve with their hosts.


Subject(s)
Chiroptera , Coronavirus Infections , Coronavirus , Paramyxovirinae , Animals , Coronavirus/genetics , Phylogeny
8.
Nat Commun ; 12(1): 216, 2021 01 11.
Article in English | MEDLINE | ID: covidwho-1017751

ABSTRACT

While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission.


Subject(s)
Chiroptera/virology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Brain/pathology , Caco-2 Cells , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Cytokines/metabolism , Dipeptidyl Peptidase 4/genetics , HEK293 Cells , Host Specificity , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/genetics
9.
Biodiversity Science ; 28(5):566-578, 2020.
Article in Chinese | CAB Abstracts | ID: covidwho-833088

ABSTRACT

Recent epidemics, such as the COVID-2019 pandemic, SARS, and rodent plague, pose a major threat to public health, food security, and ecosystem balance globally. These epidemics have all been caused, directly or indirectly, by pathogens found in mammals or other animal vectors. Based on the status of recent terrestrial wildlife epidemics in China, this study summarizes the regulatory and monitoring mechanisms for 24 important diseases occurring in wild mammals, captive breeding wild animals, and domesticated mammals in China, and then identifies gaps in regulation and knowledge for these zoonotic diseases in China. Due to the diversity of pathogens and their transmission routes, these zoonotic diseases have had frequent outbreaks in recent decades, and preventing and controlling them has become one major challenge. Currently, China's important wildlife epidemics are monitored and controlled by different levels and directives of multiple governmental agencies. The increasing global trade, poaching, illegal wildlife trade, illegal wildlife captive breeding, consumption of wild animals, and lax quarantine processes have led to complex chains of transmission, increasing risk of contact, infection, and transmission of these diseases. Additionally, the frequent occurrence of extreme climate events or natural disasters further complicate the prevention and control of these wildlife epidemics at their sources. Based on these problems in managing and controlling new and recurrent epidemics in China, we propose some countermeasures and suggestions to strengthen basic research and whole-chain supervision in order to actively prevent terrestrial wildlife epidemics.

10.
Nat Commun ; 11(1): 4235, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-738373

ABSTRACT

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 630 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.


Subject(s)
Chiroptera/virology , Coronavirus Infections/veterinary , Coronavirus/genetics , Evolution, Molecular , Zoonoses/transmission , Animals , Bayes Theorem , Betacoronavirus/classification , Betacoronavirus/genetics , Biodiversity , COVID-19 , China , Chiroptera/classification , Coronavirus/classification , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Phylogeny , Phylogeography , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL